CARBON-BASED NANOMATERIALS

Chung-Ting Ke 03/5/25

Carbon

Graphite vs Diamond

Dull, opaque, soft, common

Brilliant, transparent, hard, rare

Carbon materials

Simply arrange carbon differently, you will obtain very different outcomes:

- (a) Graphite
- (b) Diamond
- (c) Buckminster C₆₀
- (d) Carbon nanotube
- (e) Graphene

M. Scarselli et al. J. Phys. Condes. Matter (2012)

Fullerene

C60

Models of the structures of C_{60} . (Acc. Chem. Res., Vol. 25, No. 3, 1992)

20 hexagons and 12 pentagons

Nobel prize 1996

University

Photo: Prudence Cummings Photo: P. S. Howell, Rice Associates

C76

https://www.ch.ic.ac.uk/local/projects/unwin/Fullerenes.html

A. Nakagawa et al. Nat. Commun. 2018

- One can use C6o to form various compounds.
- Even control the band structure
- Many applications in chemistry, biology, and solar cells

Carbon nanotubes

- First discovered by Sumio lijima at 1991.
- Grown by DC arc-discharge evaporation of carbon which is used to produce the C₆₀

Carbon nanotubes

The 1D nanostructure with very unique electrical and mechanical properties. It is wildly used in many fields.

- Energy storage and applications
- **Electronic devices**
- Material applications
- **Bio-related applications**
- Nanostructure for research

Carbon nanotubes

• Use the size of tube to scale down the size of transistors

Quote to quote about nanotubes

listening to exciting quotations about CNT:

- - "CNT is 100 times stronger than stainless steel and six times lighter..."
- - "CNT is as hard as diamond and its thermal capacity is twice that of pure diamond..."
- - "CNT's current-carrying capacity is 1000 times higher than that of copper..."
- - "CNT is thermally stable up to 4000K..."
- - "CNT can be metallic or semiconducting, depending on their diameter and chirality..."

That all make CNT a very compelling system to work on.....

Mukul Kumar ISBN: 978-953-307-497-9

Growth of SWNTs

Typical method: chemical vapor deposition

Growth of SWNTs

- The carbon needs to attach to something like dirt or debris.
- This usually can be done purposely, it is called catalysts.
- The typical catalyst: Fe, W, Ni Au, etc. based nanoparticles.
- Very high growth rate 60 $\,\mu$ m/min

Type of CNTs

One can fold a graphene sheet in different directions:

The folded direction can be decided by the coordinate (n,m)

Band structure

(a) Armchair (metallic) (b) Zigzag(semiconductor or semimetal) Two types of tubes are semiconductor and metallic.

R. Saito et al. Physical properties of carbon nanotubes. (1998) Tsuneya ANDO 0.1143/JPSJ.74.777 (2005)

Multi-wall nanotubes

- Usually grown at a lower temperature, 750 C
- Still possessing very good properties, high tensile strength, good hardness, conductivity, thermal properties etc.

Mukul Kumar ISBN: 978-953-307-497-9

Symmetry of the tubes

Paul L. McEuen, et al. IEEE trans. on nano. (2002)

A. Makarovski, G. Finkelstein, Physica B(2008)

• Chiral + Spin leads to a four-fold degeneracy of SNT

Tube characterization

• AFM/SEM/TEM

Credit: Anton Nikitin, SSRL

Image: NJIT SEM

JÄurg Furer thesis, (2006)

Tube characterization

Raman spectroscope

M. S. Dresselhaus et al. Physics Reports (2005)

Selective growth or filtering

• Selected by Raman spectra

Selective growth or filtering

C)

Water Concentration

Fe

m-SWNT

Etching

Fe-W

s-SWNT

Underetching

Overetching

SWNT Diameter

J. Li, et al. ACS nano (2014)

Selective Etching

M. D. Yadav, et al. (2019)

• Control of catalyst is the key to selectively growth CNTs

Selective growth or filtering

S. Ghosh & C. N. R. Rao, Nano Research (2009)

• Purification with chemistry methods

M. SY Tang, et al. Nanotechnology (2016)

High quality 1D wire

Temperature dependence: Luttinger liquid

- An interaction picture for a 1D conductive system when Fermi liquid breakdown.
- The low energy excitation electron can be described by Boson instead of Fermion.
- Power law dependence in temperature was observed in the 1D carbon nanotubes.

M. Bockrath, et al. Nature (1999)

CNT quantum dot

- The clean 1d quantum wires make an easy route to create the zerodimensional quantum dots.
- The quantum dot can be defined by adding metal contact to CNT with a designed distance.
- At a low enough temperature, quantization can be revealed. Therefore, one can count electrons one by one which knows as a single-electron transistor.

Sami Sapmaz et al. Semicond. Sci. Technol. 21 (2006)

CNT quantum dot

Sami Sapmaz et al. Semicond. Sci. Technol. 21 (2006)

CNT quantum dot

P. Jarillo-Herrero et al. Nature (2005)

Quantum phase transition

Quiz

• 1.which one is the 1D carbon materials

A graphene B carbon nanotube

• 2. what is the difference between ebeam lithography and photo lithography(EUV)